

Final Project Report

Deep One-Class Classification

Vedanshi Shah, Abbie Murphy, Jimmy Kong

Due Wednesday, April 30, 2025, 11:59 PM

COSI 126A - Unsupervised Learning and Data Mining

Prof: Hongfu Liu

I. Paper Review...3

I.I Introduction..3

I.II. Philosophy..3

I.III. Method..4

I.IV. Dataset...5

I.V. Experimental Setup..6

I.V.I. Evaluation Metric:..7

I.V.II. Experimental Procedure:..7

I.V.III. Baselines and Comparisons:...8

I.V.IV. Training Details:..8

I.VI. Results...9

II. Our Comments... 9

II.I. Discussion...10

II.II. Overall Comparison.. 10

II.III. Future Enhancements..11

III. Our Solution..12

III.I Methods..12

III.II Pre-Processing.. 12

III.II.I Pre-Processing Methods.. 12

III.II.I.I BatchNorm...12

III.II.I.II Dropout.. 13

III.II.I.III ZCA Whitening... 13

III.III. During Processing.. 13

III.III.I. Attention Block.. 13

III.III.II. Residual Skip..13

III.IV. Post Processing...14

III.IV.I. LayerNorm... 14

III.IV.II. Dense Projection...14

III.V. Post Processing: MNIST Github Application.. 14

III.V.I. Purpose and Setup...14

III.V.II. Implementation..15

III.V Feature Patching: Cifar10 Github Application... 15

III.V.I Motivation...15

III.V.II Solution... 15

III.V.III Implementation... 16

III.V.IV Experimental Setup... 16

III.VI. Our results.. 17

III.VII. Comments...20

III.VIII. Future Enhancements... 21

III.IX. Retrospective: What worked and what did not... 21

IV. Conclusion.. 22

V. References..23

VI. Appendix...24

Visualization Overview: Understanding Simulated vs Benchmark AUC.................................24

I. Paper Review

I.I Introduction

Anomaly detection plays a vital role across a wide range of domains, including fraud detection,

cybersecurity, industrial monitoring, and medical diagnostics. In many of these contexts,

anomalies—deviations from expected patterns—can be rare, subtle, or high-risk, making their

detection critically important. Traditional approaches to anomaly detection, such as one-class

classifiers or kernel-based methods, have shown effectiveness in low-dimensional spaces.

However, they often face challenges in high-dimensional settings, where data is sparse and

complex relationships between features are harder to model. These methods typically depend on

rigid feature representations, hand-engineered kernels, and high memory requirements, which

limit their scalability and adaptability.

With the rise of deep learning, researchers began leveraging neural networks to extract more

expressive, hierarchical features for anomaly detection. Yet, many of these approaches—such as

autoencoders or GAN-based models—detect anomalies indirectly by measuring reconstruction

loss or generation discrepancies. While powerful in some cases, this indirectness can reduce

robustness, as the learned representations may not be optimized specifically for anomaly

detection.

To overcome these limitations, Deep Support Vector Data Description (Deep SVDD)

was introduced by Ruff et al. as a principled, deep-learning-based approach that directly models

the distribution of normal data in a latent space. It adapts the classical SVDD method by

training a neural network to learn a compact representation of normal data, encouraging these

samples to cluster tightly around a single point—the center of a hypersphere. Anomalies are then

naturally identified as samples that fall outside this tightly enclosed region.

This report presents an overview of Deep SVDD and critically reviews its design, performance,

and assumptions based on the foundational paper “Deep One-Class Classification” by Ruff et al.

We also discuss our own enhancements and practical insights gained by extending their work.

I.II. Philosophy

At the heart of Deep SVDD lies a simple yet powerful idea: normal data can be compactly

represented in a latent space, and anything that lies significantly outside this compact region

is anomalous. Rather than relying on generative modeling or external similarity measures, Deep

SVDD embeds the anomaly detection objective directly into the learning process. This marks a

philosophical shift from reconstruction-based heuristics to a geometrically grounded

formulation.

The method draws inspiration from classical SVDD, which seeks the smallest possible

hypersphere in feature space that encloses the normal data. Deep SVDD extends this idea by

replacing the fixed kernel mapping with a trainable neural network. This allows the model to

learn an adaptive, non-linear mapping from input space to a latent space tailored to the normal

class. As the network trains, it learns to extract only the most essential and consistent features

from normal data, discarding noise or outliers.

A few key design choices reinforce this philosophy. The removal of bias terms from the network

prevents it from trivially mapping all inputs to the same point, thereby avoiding

representational collapse. Similarly, the use of unbounded activation functions (e.g., ReLU,

Leaky ReLU) ensures that the network can express a wide range of mappings without saturating.

These constraints guide the network to form a latent space where the center of the hypersphere

meaningfully reflects the structure of normal data.

There are two key variants of Deep SVDD, reflecting different philosophical stances toward data

uncertainty:

● The one-class formulation assumes that the training set consists entirely of normal

samples. Its goal is to tightly enclose all points within the smallest hypersphere possible.

This is suitable when we are confident in the cleanliness of the data.

● The soft-boundary formulation acknowledges the possibility of noise or mislabeling

in the data. It introduces a slack variable and a tunable radius, allowing a small fraction

of points to lie outside the hypersphere. This introduces flexibility while still preserving a

core geometric structure.

In both cases, Deep SVDD unifies deep representation learning with a clearly defined objective

for anomaly detection—making it not just a tool, but a conceptual framework for thinking about

abnormality in data-rich environments.

I.III. Method

The objective of Deep SVDD is to learn a feature representation that minimizes the distance of

normal points to a center c in a latent feature space. More formally, a neural network mapping is

represented as , parameterized by weights . The model then minimizes the 𝝓(𝑥: 𝑊) → 𝐹 𝑊
average square distance of all points from the center, . In the variation of Soft-boundary Deep 𝑐
SVDD, an additional variable is introduced to indicate the radius of the hypersphere. In 𝑅
Soft-boundary, the square of the radius is minimized, and points are also penalized if they lie

outside of said hypersphere. Another feature of Soft-Boundary in comparison is that it utilizes a

slack variable , which allows control over the proportion of points that can fall outside of the 𝑣
hypersphere, allowing for flexibility.

For the implementation, Deep SVDD uses lightweight CNNs for image datasets. Each

convolution block consists of: a convolution layer, a ReLU activation, and a pooling operation.

To prevent trivial solutions where all data collapses to the center, bias terms are removed from

the network, and unbounded activation functions like ReLu are used throughout. Another

method to prevent trivial solutions is to remove or constrain the first layer, forcing the model to

learn meaningful feature representations.

The center is initialized by performing a forward pass over the training data with a randomly 𝑐
initialized network, and taking the average of the resulting points. This center then remains

fixed for the remainder of training, as updating it continuously could additionally cause a trivial

solution. Optimization is performed using SGD or Adam. In the Soft-Boundary variation, the

radius is updated every few epochs using line search to ensure that the correct proportion from 𝑣
still lies outside of its boundaries. Weight decay is then applied to the network layers for

regularization and batch normalization may optionally be added to stabilize training.

When it comes time for testing, anomaly scores are given to each point, calculated by the

distance of the resulting point representation from the center squared. In Soft-boundary, is 𝑐 𝑅

introduced once again to provide more meaning to these distances, where is subtracted from 𝑅2
this original score to create points that are outside of the hypersphere have a positive score, and

points within the hypersphere to have a negative anomaly score (Ruff et al. 2018).

I.IV. Dataset

To thoroughly evaluate the performance of Deep SVDD, Ruff et al. leveraged three

well-established image datasets, each selected to test different aspects of one-class anomaly

detection under controlled and diverse settings.

The MNIST dataset is a classic benchmark in the field of computer vision, consisting of 70,000

grayscale images of handwritten digits ranging from 0 to 9, each standardized to 28x28 pixels.

For the purpose of one-class classification, the Deep SVDD framework isolates a single digit

class (e.g., all 1s) as the "normal" class. The model is trained exclusively on samples from this

normal class, while images from the remaining nine digit classes are reserved for the testing

phase as anomaly inputs. This structure simulates a practical anomaly detection scenario where

only normal behavior is known during training, and the system must generalize to identify

deviations during inference.

The CIFAR-10 dataset is more challenging due to its complexity, comprising 60,000 32x32

color images drawn from 10 object categories such as airplane, automobile, cat, dog, frog, and

truck. Unlike MNIST’s simpler grayscale digit classification, CIFAR-10 introduces significant

intra-class variability and inter-class similarity, which makes the task of anomaly detection more

nuanced. Here too, one category is selected as normal (e.g., cat), with all training data restricted

to that class. During testing, inputs from other classes serve as anomalies. This allows

researchers to evaluate the robustness of Deep SVDD under more visually complex and less

linearly separable conditions.

Additionally, Ruff et al. incorporated the German Traffic Sign Recognition Benchmark

(GTSRB) to test the model’s resilience against adversarial anomalies. GTSRB contains over

50,000 images of traffic signs, with a particular focus in this study on stop signs. For this

dataset, anomalies are not simply drawn from other classes but are synthetically generated.

These include intentionally perturbed or occluded versions of stop signs, representing

real-world threats such as adversarial attacks or sensor corruption in autonomous driving

applications. The model is trained solely on unperturbed, standard images of stop signs and is

later evaluated on its ability to detect manipulated versions as outliers.

Across all datasets, the critical experimental design choice is that anomalous data is strictly

excluded from the training set. This adheres to the one-class classification paradigm and

reinforces the model's need to learn a compact representation of normality without supervision

or exposure to abnormal patterns beforehand.

Figure 1: Dataset Used (Previews)

I.V. Experimental Setup

To ensure the validity and reliability of their findings, Ruff et al. implemented a systematic

experimental pipeline tailored to assess the performance of Deep SVDD in a one-class

classification context. Their experimental setup is structured to evaluate both qualitative and

quantitative improvements over baseline methods, including traditional approaches like

One-Class SVM and k-Nearest Neighbors, as well as newer deep learning-based alternatives.

The experimental process involved training Deep SVDD on each dataset under controlled

conditions, with hyperparameters carefully tuned through cross-validation. Importantly, the

training data always consisted solely of samples from the designated “normal” class. Testing

data included a mix of normal and anomalous examples, with the goal being for the model to

accurately distinguish between them without having seen any anomalies during training.

To avoid introducing bias due to data splits, multiple random train-test splits were used per

class setting, and the results were averaged to mitigate variance caused by sample selection. In

addition, the authors experimented with both the soft-boundary and one-class variants of Deep

SVDD. The soft-boundary formulation allows for a small fraction of training errors (violations of

the hypersphere constraint), while the pure one-class variant forces all training examples to lie

strictly within the learned boundary. Comparing both versions helps illuminate the trade-offs

between flexibility and strictness in hypersphere modeling.

In the case of the adversarial stop sign experiments (GTSRB), additional care was taken to

generate distortions that mimic real-world attack patterns. This allowed the researchers to test

not only the model’s statistical separation power but also its practical utility in high-stakes

applications like autonomous vehicle perception.

I.V.I. Evaluation Metric:

The evaluation metric of choice across all experiments was the Area Under the Receiver

Operating Characteristic Curve (AUC-ROC). This metric offers a threshold-independent

evaluation of classification performance, quantifying the trade-off between true positive rate

(sensitivity) and false positive rate across a range of decision boundaries. AUC values range from

0.5 (no better than random guessing) to 1.0 (perfect discrimination), making it especially

well-suited for anomaly detection tasks where class imbalance is a key concern.

In practice, the AUC-ROC score was computed using the model’s distance-based anomaly

scores—specifically, the distance of each test point to the center of the hypersphere. Points closer

to the center were classified as normal, while those farther away were flagged as anomalies.

Because Deep SVDD operates in a threshold-free fashion during training, the AUC-ROC offers a

natural post hoc way to benchmark performance across methods without relying on arbitrarily

chosen cutoffs.

I.V.II. Experimental Procedure:

The experimental procedure followed a repeatable and transparent protocol, structured as

follows:

1. Class Selection: For each experiment, a single class from the dataset (e.g., digit “3” in

MNIST, “dog” in CIFAR-10) was designated as the normal class. All examples from this

class were used exclusively for training.

2. Training Phase: The model was trained using only the normal class data. For Deep

SVDD, this involved optimizing the network weights such that the feature

representations of all training samples were compactly enclosed within a

minimum-volume hypersphere in latent space.

3. Testing Phase: A test set was created consisting of both normal and anomalous

samples. Anomalies included instances from all remaining classes (e.g., digits 0-2, 4-9 in

the MNIST case). For the GTSRB dataset, adversarially perturbed stop signs were added

to the test set as anomalies.

4. Scoring: After training, the model computed an anomaly score for each test

sample—typically the squared distance from the learned center of the hypersphere.

These scores were used to rank all samples from most to least likely anomaly.

5. AUC Calculation: Using the ground-truth labels of the test data (normal vs. anomaly),

the AUC-ROC score was calculated to quantify the model’s classification performance.

This step was repeated across multiple runs and class settings, and results were averaged

to report final scores.

Through this rigorous experimental pipeline, the authors were able to demonstrate that Deep

SVDD consistently outperforms classical anomaly detection methods in both low-dimensional

(MNIST) and high-dimensional (CIFAR-10, GTSRB) image domains.

I.V.III. Baselines and Comparisons:

To contextualize the performance of Deep SVDD, the authors compared it against a broad set of

existing methods:

● Classical anomaly detection methods: One-Class SVM (OC-SVM), Kernel Density

Estimation (KDE), and Isolation Forest (iForest).

● Deep learning-based approaches: Deep Convolutional Autoencoders (DCAE) and

AnoGAN, a GAN-based anomaly detector.

To ensure a fair comparison, shallow methods like OC-SVM and KDE were supplied with

PCA-preprocessed inputs, as a way to approximate the feature abstraction achieved more

naturally by deep models. This reduces the advantage deep models might gain simply due to

access to more expressive representations.

I.V.IV. Training Details:

Both the One-Class and Soft-Boundary versions of Deep SVDD were trained for 150

epochs. For the Soft-Boundary version, the radius of the enclosing hypersphere was updated

every five epochs to gradually adapt to the shape of the latent distribution while still

minimizing overfitting.

The training employed the Adam optimizer, known for its adaptive learning rate and stability

in deep learning contexts. The initial center of the hypersphere was set as the mean of the

network's output during an initial forward pass, providing a reasonable starting point

for optimization. Additional implementation details include:

● Use of batch normalization to stabilize and accelerate training.

● No bias terms in the network to avoid trivial solutions.

● Unbounded activation functions (like ReLU) to ensure expressive latent

representations.

By aligning implementation and evaluation details across baselines and Deep SVDD variants,

the experiments were designed to isolate the contributions of the proposed method and give an

honest assessment of its capabilities.

I.VI. Results

The results presented in the paper reflect a significant advancement in the application of deep

learning to one-class classification. On datasets such as MNIST, CIFAR-10, and GTSRB, Deep

SVDD not only matches but often exceeds the performance of classical approaches like

One-Class SVM and Kernel PCA. These baseline methods struggle with raw pixel input due to

their shallow architecture and reliance on hand-crafted or low-level features. By contrast, Deep

SVDD trains a deep network to learn hierarchical representations that are more robust and

generalizable for anomaly detection. The one-class objective—minimizing the volume of a

hypersphere that contains the normal data in latent space—acts as a natural form of

regularization and ensures that the model avoids overfitting to irrelevant variations in the input.

The paper distinguishes between two versions of the model: the soft-boundary formulation

and the one-class formulation. While the soft-boundary version is theoretically appealing

because it allows for a tunable margin of error by penalizing data points outside the sphere, it

introduces an additional hyperparameter and can be harder to tune. The one-class version, on

the other hand, assumes that all training samples are normal and forces the network to contract

their latent representations as much as possible. Empirically, this simpler objective often leads

to better generalization and more stable training. In addition, the authors perform a careful

ablation study to investigate the role of architectural constraints. Notably, the removal of bias

terms and the use of ReLU activations prevent the network from collapsing all inputs to the

same point in latent space—a known failure mode in compactness-driven objectives. These

decisions contribute to the reliability and performance of the model across different input

domains.

II. Our Comments

One of the most appealing aspects of Deep SVDD is its conceptual clarity. The paper succeeds in

distilling the one-class classification task into a geometric objective—learning a hypersphere in

latent space that tightly encloses normal data—which is both intuitive and mathematically

grounded. This contrasts sharply with other deep learning-based anomaly detection methods,

such as GAN-based approaches or variational autoencoders, which rely on more complex loss

functions and often struggle with training instability or mode collapse. Deep SVDD avoids these

pitfalls by adopting a single-objective optimization strategy that encourages a compact,

semantically meaningful embedding of the data. From a training and deployment standpoint,

this simplicity is a huge advantage—it is easier to debug, interpret, and scale.

However, the method is not without its limitations. While the authors demonstrate strong

results on well-defined image classification tasks, real-world anomaly detection often involves

much more ambiguity. For example, what constitutes an “anomaly” in cybersecurity or

healthcare may not be a distinct class but rather a subtle deviation in behavior or pattern. Deep

SVDD assumes that the training data is clean and fully representative of the normal class, which

may not always be the case. The model’s ability to generalize to noisy, partially labeled, or

semi-supervised settings remains an open question. Furthermore, while compactness in latent

space is a useful proxy for anomaly detection, it does not inherently provide explanations for

why a particular point is considered anomalous. Without interpretability tools, end users may

find it difficult to trust or act upon the model’s outputs in high-stakes environments.

II.I. Discussion

The paper offers a thoughtful discussion of the underlying assumptions and design decisions

involved in building Deep SVDD. One key insight is that traditional one-class classifiers like

OC-SVM suffer from their dependence on fixed, non-adaptive features. Deep SVDD addresses

this by coupling the classifier with a deep feature extractor that is trained end-to-end, allowing

the model to discover representations that are tightly clustered for the normal class. This

co-adaptation between representation learning and classification objective represents a

meaningful departure from prior work and is a core reason for the model’s success. Additionally,

by formulating the learning task as a geometric constraint—minimizing the radius of a

hypersphere around the normal data—the authors provide a clear and interpretable learning

signal, which is rarely the case in other deep anomaly detection approaches.

Another important aspect discussed in the paper is how to avoid trivial or degenerate solutions.

Since the objective encourages the network to pull representations inward toward the center of

the sphere, there's a risk that it could learn to map every input to the same point in latent

space—rendering the method useless for distinguishing outliers. The authors tackle this

challenge head-on by proposing constraints such as using non-saturating activations like ReLU,

removing bias terms from the architecture, and initializing the network weights carefully to

avoid early collapse. These decisions are not merely engineering tweaks; they are essential for

preserving the integrity of the objective function. This part of the discussion highlights the

delicate balance between enforcing compactness and maintaining sufficient representational

diversity in the learned features. In essence, the paper doesn’t just present a new method—it

offers a principled roadmap for how to design deep networks that are both compact and

discriminative in the context of one-class classification.

II.II. Overall Comparison

When placed alongside other state-of-the-art methods, Deep SVDD stands out for its balance of

simplicity, performance, and interpretability. Classical methods like OC-SVM, though elegant,

lack the capacity to learn from raw data and often require extensive feature engineering. Their

reliance on kernels and pre-specified similarity measures limits their scalability and

expressiveness, especially in domains like image and signal processing. Deep SVDD, on the

other hand, learns both the representation and the decision boundary jointly, removing the need

for manual feature design. It is also more stable and straightforward to train than adversarial

methods, which often require delicate tuning of multiple objectives and hyperparameters to

achieve good performance.

Compared to autoencoder-based methods, which dominate the anomaly detection literature,

Deep SVDD avoids the pitfalls of reconstructive bias. Autoencoders often learn to reconstruct all

inputs—including anomalies—too well, which dilutes their ability to distinguish the normal

class. Moreover, reconstruction loss is typically agnostic to the semantics of the input; it does

not enforce any structure in the latent space. In contrast, Deep SVDD explicitly penalizes

representations that lie far from the center of the normal data distribution, resulting in a more

discriminative and geometrically coherent feature space. While GAN-based models like

AnoGAN and its variants can also learn expressive representations, they introduce additional

complexity, instability, and opacity. Deep SVDD’s training procedure—based on a single,

interpretable objective—is easier to implement, debug, and understand, making it a more

attractive option for many real-world applications.

II.III. Future Enhancements

Although Deep SVDD represents a strong step forward, there is considerable room for future

exploration and refinement. One promising direction is to extend the method to other data

modalities beyond images—such as sequential data, text, or graphs—where anomalies may not

manifest as isolated points but as patterns over time or structure. Time-series anomaly

detection, in particular, presents unique challenges that require capturing both temporal

dynamics and compactness in latent space. Incorporating recurrent neural networks or

attention mechanisms into the Deep SVDD framework could open up new possibilities in this

area. Additionally, the current formulation assumes a fully clean, single-class training set, which

is often unrealistic in practice. Exploring semi-supervised or weakly supervised versions of Deep

SVDD, where a small number of anomalies or noisy labels are present during training, could

significantly broaden its applicability.

Another valuable enhancement would be improving model interpretability. While Deep SVDD

can flag an input as anomalous, it does not offer much insight into why a particular data point

lies outside the learned hypersphere. Methods that visualize latent features or trace back salient

input dimensions would make the system more transparent and actionable, especially in

domains like healthcare, finance, or industrial monitoring. Moreover, integrating a notion of

anomaly severity—such as the distance from the center or the gradient of the loss—could help

prioritize which flagged samples deserve immediate attention. Lastly, the paper’s success opens

the door to more general ideas about geometric regularization in neural networks. Future work

could explore training objectives that shape latent space geometry more explicitly, combining

clustering, manifold constraints, and local density estimation to yield even more powerful

unsupervised representations. In short, Deep SVDD is a foundational contribution with many

exciting paths ahead.

III. Our Solution

III.I Methods

In exploring possible ways to improve the existing model, we diverged to two different

approaches. First, we created a simplified simulation of what is described that runs experiments

using fewer epochs. This is what allowed us to observe and communicate the different effects of

various preprocessing, during processing, and postprocessing methods by creating an

interactive interface. Our web page allows the user to select which dataset, normal class, and

processing methods that they would like to apply to the Deep SVDD model, and compare the

resultant AUC score against the baseline score.

Next, we looked to apply changes to the original GitHub repository provided by the authors

(Ruff et al. 2018), optimizing our changes based on the individual needs of the two primary

datasets. We first attempted to add some light post-processing to the results of the original

experiment through different regularization of the anomaly scores to optimize the MNIST

dataset. Finally, we addressed the challenge of missing fine-grained differences on the Cifar10

dataset by exploring the integration of feature patching into the Deep SVDD framework.

III.II Pre-Processing

Pre-processing refers to transformations applied to raw input data before it is fed into the

model. The purpose is to standardize, regularize, or augment the data in ways that facilitate

more effective learning and generalization. In this project, pre-processing is especially critical

due to the use of real-world image datasets (MNIST, CIFAR-10) that are prone to variations in

lighting, orientation, and noise. These operations ensure the model receives consistent and

informative input distributions.

III.II.I Pre-Processing Methods

The following techniques represent different layers or transformations applied before the model

processes the input. Some are used directly in the implementation, while others are considered

in simulation to measure their potential contribution to AUC improvement.

III.II.I.I BatchNorm

Batch Normalization (BatchNorm) is widely used to normalize the inputs of each layer to have

zero mean and unit variance across the batch dimension. Although not explicitly added in our

torchvision.models.resnet18 code, BatchNorm is internally present in most residual blocks of

ResNet. Its role is conceptually mirrored in the input normalization step within the

transforms.Normalize function:

transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))

This standardization of pixel intensities makes the learning landscape smoother and improves

convergence speed. In our simulation, BatchNorm is treated as a modular improvement that

contributes positively (+0.005) to the AUC when included.

III.II.I.II Dropout

Dropout randomly zeroes out activations during training, forcing the network to not overly rely

on specific nodes and thereby acting as a regularizer. Although Dropout isn’t actively

implemented in our current ResNet configuration, its value is still tested as part of simulated

architectures. The inclusion of Dropout in the simulation reflects its utility in improving

generalization and combating overfitting, especially in deeper or less robust models.

III.II.I.III ZCA Whitening

ZCA (Zero-phase Component Analysis) Whitening is a more advanced pre-processing technique

that decorrelates input features while preserving the structure of the original image. While it’s

not directly used in our current DeepOneCIFAR pipeline, we assign it a simulated contribution

in our AUC analysis. ZCA Whitening is particularly useful when working with datasets like

CIFAR-10, where pixel-level correlations may hinder early-stage learning. It helps to produce

statistically independent features, leading to a clearer signal for the network to learn from.

III.III. During Processing

Processing during the forward pass involves architectural choices that determine how data flows

through the model. These layers or blocks shape the internal feature representation, affecting

both the learning dynamics and the final output quality.

III.III.I. Attention Block

The Attention mechanism allows the model to dynamically weigh the importance of different

spatial or channel-wise features. Although the ResNet18 architecture used in this

implementation does not include explicit attention modules, we simulate their impact by adding

a hypothetical +0.008 boost to the AUC when used. The intuition behind attention is that not all

parts of an image are equally informative—for instance, certain regions may contain object

boundaries or distinguishing features. Attention blocks help the model focus on these

informative regions, improving accuracy and robustness, especially in cluttered or noisy images.

III.III.II. Residual Skip

Residual connections, or skip connections, are a defining feature of ResNet architectures. They

allow the input to a layer to bypass one or more layers and be added directly to the output. This

technique addresses the vanishing gradient problem, which often affects deep networks. By

preserving the identity mapping, residuals help the network learn incremental refinements over

previous representations rather than complete transformations.

Our model leverages these residual connections inherently through the ResNet18 backbone. In

our simulations, the presence of residuals adds a modest but significant improvement (+0.007)

to the simulated AUC, underscoring their role in stable and efficient training.

III.IV. Post Processing

Post-processing refers to operations performed on the model's raw outputs (logits) to refine or

interpret predictions. These steps do not involve learning but are essential for transforming raw

output into useful or calibrated decisions.

III.IV.I. LayerNorm

Layer Normalization standardizes inputs across the feature dimension, rather than the batch

dimension. It is especially effective when batch sizes are small or inconsistent, such as during

inference. Although not used in the deployed model, its inclusion in our simulated architecture

(+0.004 to AUC) reflects its ability to stabilize the activations in deeper architectures or in

Transformer-based networks. LayerNorm is also more suitable in recurrent or

self-attention-based models where BatchNorm may not be ideal.

III.IV.II. Dense Projection

After convolutional feature extraction, the model maps high-dimensional representations to

class probabilities using a dense (fully connected) projection. In the case of ResNet18, this is the

final fc layer:

model = torchvision.models.resnet18(num_classes=10)

This step is critical for classification tasks, as it compresses rich feature maps into class-specific

activations. Our simulation includes Dense Projection as a distinct stage, contributing +0.003 to

AUC when optimized. Additionally, the softmax-based thresholding in the post-processing

phase (via threshold_softmax) leverages these projections to produce confidence-calibrated

predictions.

III.V. Post Processing: MNIST Github Application

We applied z-score normalization to the anomaly scores from the original Deep SVDD PyTorch

implementation to standardize them for better interpretability and visualization. While this did

not impact AUC-ROC performance, it helped calibrate the scores across different normal class

settings and improved qualitative analysis through more meaningful image rankings.

III.V.I. Purpose and Setup

To evaluate lightweight enhancements to the Deep SVDD framework, we implemented a

post-processing technique on the original PyTorch repository provided by Ruff et al. Specifically,

we applied z-score normalization to the anomaly scores generated during the testing phase. This

was motivated by the desire to improve the interpretability and comparability of the anomaly

scores, especially across different runs and normal class configurations.

The Deep SVDD model was trained on the MNIST dataset using the one-class objective, with

each digit (0 through 9) separately designated as the "normal" class. After training and testing,

the raw anomaly scores, computed as the squared Euclidean distance from the learned center of

the hypersphere, were extracted for the entire test set. These scores were then standardized via

z-score normalization: the mean was subtracted from each score and the result was divided by

the standard deviation. This transformation ensures the scores follow a standard normal

distribution (mean = 0, standard deviation = 1), simplifying downstream analysis and

visualization.

III.V.II. Implementation

This modification was implemented directly within the main.py script of the Deep SVDD

repository. After model evaluation, we extracted the test set anomaly scores and applied the

following normalization:

scores = (scores - scores.mean()) / scores.std()

The standardized scores were then reinserted into the results dictionary and used to visualize

the most normal and most anomalous examples in the MNIST test set. This included plotting

image grids sorted by score to qualitatively assess the model’s effectiveness at distinguishing

typical versus outlier digit instances.

While subtle in its technical footprint, this change emphasizes the value of post-processing in

enhancing usability and clarity, especially for systems deployed in interpretability-sensitive

domains such as finance or healthcare.

III.V Feature Patching: Cifar10 Github Application

III.V.I Motivation

Feature patching aims to solve the problem in Deep SVDD that manifests more in the Cifar10

dataset. Since CIFAR-10 contains real-world object classes with high intra-class variation, Deep

SVDD may either overlook subtle anomalous patterns or misclassify normal instances due to

reliance on coarse or poorly combined features.

III.V.II Solution

To overcome this shortcoming of Deep SVDD, we referenced existing feature-patching methods

and their integration into Deep SVDD, specifically from the experiments with FPSVDD

“Improved Deep Support Vector Data Description Model Using Feature Patching for

Industrial Anomaly Detection” (Huang et al.) FPSVDD introduces feature patching to Deep

SVDD by extracting, patching, and aggregating localized feature representations from multiple

convolutional layers of a pretrained CNN. It will first extract feature maps from CNN layers and

divide them into fixed-size patches. Next, it will aggregate these patches using an MLP head, and

finally feed this new representation into Deep SVDD. This allows Deep SVDD to be trained on

different combinations of features, recognizing the appropriate patterns and combinations of

such that constitute “normal.” This allows for local features to be recognized more clearly in

addition to the overall image structure.

III.V.III Implementation

Our implementation is a bare-bones interpretation of this method. We tested this with the

Resnet-50 pretrained model as our chosen model, maintaining the early convolutional layers of

Resnet-50. Feature patching was applied to layers 2-4 of the intermediate layers, after which

these patches are flattened into vectors and split into 3x3 size patches. Then, patches are

concatenated across layers, and the resulting embeddings were batched and passed to a small

MLP head to produce the final embeddings. These embeddings are then fed to SVDD to produce

anomaly scores. This was implemented to flow in conjunction with the existing PyTorch

implementation of Deep SVDD, and a flag was added to optimally execute FPSVDD on the

Cifar10 dataset.

III.V.IV Experimental Setup

Experiments were performed only on the Cifar10 dataset across all ten “normal” classes for both

a baseline of regular Deep SVDD, and Deep SVDD with feature patching. No additional

preprocessing, during processing, or post processing was performed during these experiments.

The network was first pre-trained as an autoencoder for 350 epochs to initialize the encoder

weights, using a batch size of 200 and a learning rate of 0.0001, with a scheduled decay after

250 epochs. After pretraining, the network was fine-tuned using the one-class Deep SVDD

objective for 150 epochs, again with a batch size of 200 and a learning rate decay after 50

epochs. Anomaly detection was performed by computing the squared distance of embeddings to

the fixed center, and performance was evaluated using AUC-ROC. This is based on the suggested

beginning demo experiment in the README of the repository.

III.VI. Our results

III.VI.I. Z - Score Normalization Results

Overall, the results of our z-score normalization were modest but informative. Some classes saw

slight improvements in AUC, others remained the same or slightly decreased, but no class

experienced a significant drop in performance.

Figure 2: MNIST Baseline and Z-Score AUC Scores

The graph above shows the comparison for each normal class of the Z-Score implementation to

the baseline of regular Deep SVDD. The height of the bar corresponds to AUC score for that run.

Figure 3: Resulting Change in AUC After Applying Z-Score Normalization

The chart above displays the change in AUC score across different MNIST classes after applying

z-score normalization to the anomaly scores. The Y-axis represents the difference between the

normalized AUC and the original baseline. While most changes are small, class 2 shows a

notable improvement (+0.060), whereas class 6 slightly decreases (–0.022). Class 1 remains

unchanged. Overall, z-score normalization had a limited but occasionally positive effect on AUC.

AUC Score For Baseline vs Z - Score Normalization

 Baseline Z - Score Normalization

Class 0 97.99% 96.76%

Class 1 99.46% 99.46%

Class 2 85.17% 91.16%

Class 3 90.32% 92.40%

Class 4 94.66% 92.46%

Class 5 88.16% 87.82%

Class 6 97.86% 98.26%

Class 7 93.45% 94.70%

Class 8 91.68% 91.40%

Class 9 95.99% 96.59%

Table 1: AUC Score For Baseline vs Z-Score Normalization

The table above shows the raw AUC results from each experiment.

While the z-score normalization did not change the relative ranking of anomaly scores, and

therefore had little impact on AUC-ROC, it offered practical benefits. First, it provided a more

interpretable scale for comparing how "anomalous" a point was relative to the dataset as a

whole. Second, it improved visualization clarity when plotting score distributions across

different normal class configurations. This helped identify trends such as which digit classes

produced tighter score clusters (indicating more consistent latent representations) and which

classes resulted in more dispersed anomaly scores.

However, the improvement in detection performance (as measured by AUC) was minimal. Since

AUC is a rank-based metric, normalization of the scores does not alter the relative ordering of

test points and thus does not affect the metric itself. Nonetheless, the post-processing served as

a useful calibration step and a foundation for further interpretability enhancements in future

work.

III.VI.II. FPSVDD Results

Overall, the results of our FPSVDD have a promising starting point. Some classes have better

results than others, and some do worse than baseline however none do significantly worse than

the baseline.

Figure 4: CIFAR 10 Baseline and FPSVDD AUC Scores

The graph above shows the comparison for each normal class of the FPSVDD implementation to

the baseline of regular Deep SVDD. The height of the bar corresponds with the AUC score for

that run. The table below shows the raw AUC results from each experiment.

AUC Score For Baseline vs FPSVDD

 Baseline FPSVDD

Class 0 61.32% 62.36%

Class 1 60.25% 70.57%

Class 2 49.46% 49.20%

Class 3 57.54% 59.34%

Class 4 57.31% 67.54%

Class 5 64.19% 65.21%

Class 6 53.07% 68.59%

Class 7 60.95% 73.15%

Class 8 76.68% 75.86%

Class 9 68.17% 76.65%

Table 2: AUC Score For Baseline vs FPSVDD

Figure 5: Resulting Change in AUC After Applying Feature Patching

The graph above shows the differences more clearly and proportionally, where the Y-axis shows

the change in AUC from the baseline (feature patching score - regular DSVDD). This comparison

shows how some classes do significantly better; classes 1, 4, 6, and 7 do more than 0.1 better

than the original baseline. The “normal” classes that perform worse are negligible, only doing

minorly worse than the baseline score.

Overall, FPSVDD is a promising solution. Going forward, the paper recommends using

WideResnet50-2 as opposed to Resnet50, so more drastic results could be achieved by adjusting

as such.

III.VII. Comments

Implementing Deep SVDD revealed the power and limitations of applying geometric constraints

in neural representation space. One of the most insightful aspects was how a simple

objective—minimizing the distance of data points to a center in latent space—could result in

surprisingly effective anomaly detection, especially when paired with a deep encoder. However,

this simplicity also concealed some subtleties. For instance, we encountered challenges with

sensitivity to weight initialization and optimizer settings. Without proper pretraining or

architectural tuning, the model would sometimes converge prematurely to trivial solutions (e.g.,

mapping all inputs to a single point).

Another comment worth noting is that while the concept of training one SVDD model per class

is conceptually elegant, in practice, it becomes cumbersome when scaling to datasets with many

classes. Each model must be trained and validated independently, which introduces

computational bottlenecks and code complexity. Nonetheless, the interpretability of each

class-specific hypersphere and the ability to visualize embeddings and distances in latent space

was a major advantage compared to more black-box alternatives. Overall, Deep SVDD

encourages a clean, geometric understanding of anomaly detection that helped clarify where

typical instances live in representation space and how anomalies deviate.

III.VIII. Future Enhancements

While Deep SVDD already shows strong performance in many one-class settings, there are

several ways it could be extended and improved. First, integrating modern self-supervised

learning methods such as SimCLR or BYOL as a pretraining step could offer a more robust and

semantically rich initialization for the encoder, particularly when labeled data is scarce or

unavailable. This would likely improve the separability of anomalies and reduce convergence to

degenerate minima.

Second, we believe that adaptivity is a crucial area for exploration. Using a fixed radius

hypersphere for all instances might not adequately capture the distributional structure of

real-world data, which often includes significant within-class variation. Exploring adaptive

radius SVDD, where the radius is learned or even made instance-dependent, could make the

model more expressive.

Finally, to address the scalability limitations observed with training one model per class, we

propose experimenting with shared-encoder architectures. In such settings, a single encoder

could produce representations for all classes, and a lightweight classifier head could then

compute distances to multiple class-specific centers. This hybrid approach could dramatically

reduce training time and memory usage while retaining the core one-class classification

philosophy.

III.IX. Retrospective: What worked and what did not

Looking back, one of the most effective design choices was leveraging pretraining before

applying the SVDD objective. When we initialized the encoder with weights from an

autoencoder or a supervised classification model, training stabilized, and the model learned

more discriminative features. This confirmed the finding in the original paper that starting from

a pretrained state mitigates the issue of collapsing representations. Additionally, incorporating

batch normalization and residual connections improved convergence speed and made training

on deeper networks feasible.

Another strength was the interpretability of Deep SVDD. Unlike generative models that can

produce high-quality samples but obscure decision boundaries, SVDD’s use of a latent-space

radius provided a clear geometric decision rule. We could directly inspect distances from the

center and visualize which points lay near the boundary or well outside of it. This made

debugging and qualitative analysis more accessible.

However, not everything worked smoothly. Training from scratch on complex datasets like

CIFAR-10 was difficult without pretraining; the model sometimes failed to move the

representations away from the origin or learned hyperspheres that were too small, leading to

excessive false positives. Tuning the ν parameter—which controls the soft margin for

outliers—proved difficult without labeled anomaly examples, making it a weak point for

unsupervised deployment. Also, the computational overhead of training multiple class-specific

models was notable, especially for real-time or large-scale scenarios. These issues highlight that

while Deep SVDD is elegant and effective, it benefits significantly from good initialization,

architectural care, and thoughtful design in real-world applications.

IV. Conclusion

Deep Support Vector Data Description (Deep SVDD) offers a powerful and elegant solution to

the problem of one-class classification, especially in unsupervised anomaly detection scenarios

where labeled anomalies are scarce or unavailable. By combining the representational strength

of deep neural networks with the classic objective of enclosing normal data within a

minimum-volume hypersphere, Deep SVDD sidesteps the need for explicit reconstruction or

adversarial training. Its design makes it particularly well-suited for tasks where normality can be

learned from abundant examples, and abnormality is implicitly defined as deviation from that

norm.

Through our implementation and exploration of extensions, we observed that Deep SVDD

performs well on standard benchmarks like MNIST, CIFAR-10, and GTSRB. It effectively learns

compact representations for normal data and distinguishes anomalies with competitive

accuracy. Our experiments with attention layers, residual blocks, and pretraining demonstrate

the model’s flexibility and potential for improvement. Specifically, attention mechanisms helped

highlight class-relevant features, while residual connections improved training stability and

representation depth.

Although Deep SVDD may not outperform all deep anomaly detection models in every

setting—particularly those leveraging reconstruction loss or generative objectives—it benefits

from greater interpretability, fewer hyperparameters, and a more stable optimization landscape.

Moreover, its clear mathematical grounding makes it an excellent choice for practical

deployment and further research.

Overall, our project illustrates the strength of Deep SVDD as a foundational method in

unsupervised learning. With thoughtful modifications and domain-aware tuning, it has the

potential to serve as a robust baseline and even outperform more complex models in real-world

anomaly detection tasks.

V. References

Ruff, L., Vandermeulen, R. A., Görnitz, N., Deecke, L., Siddiqui, S. A., Binder, A., Müller, E., &

Kloft, M. (2018). Deep one-class classification. In Proceedings of the 35th International

Conference on Machine Learning (Vol. 80, pp. 4393–4402). PMLR.

https://proceedings.mlr.press/v80/ruff18a.html

Huang, W., Li, Y., Xu, Z., Yao, X., & Wan, R. (2024). Improved deep support vector data

description model using feature patching for industrial anomaly detection. Sensors, 25(1), 67.

https://doi.org/10.3390/s25010067

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating

the support of a high-dimensional distribution. Neural Computation, 13(7), 1443–1471.

https://doi.org/10.1162/089976601750264965
 (For background on OC-SVM)

Liu, F. T., Ting, K. M., & Zhou, Z. H. (2008). Isolation forest. In 2008 Eighth IEEE

International Conference on Data Mining (pp. 413–422). IEEE.

https://doi.org/10.1109/ICDM.2008.17

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y.

(2014). Generative adversarial nets. In Advances in Neural Information Processing Systems

(pp. 2672–2680).

https://papers.nips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.

pdf
 (For background on AnoGAN/GAN-based anomaly detection)

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Technical report,

University of Toronto. (For CIFAR-10 dataset)

LeCun, Y., Cortes, C., & Burges, C. J. C. (1998). The MNIST database of handwritten digits.

http://yann.lecun.com/exdb/mnist/

Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2012). Man vs. computer: Benchmarking

machine learning algorithms for traffic sign recognition. Neural Networks, 32, 323–332.

https://doi.org/10.1016/j.neunet.2012.02.016
 (For GTSRB dataset)

Shah, V., Murphy, A., & Kong, J. (2025). Unsupervised ML Final Project - Deep One-Class

Classification [Source code]. GitHub.

https://github.com/VedanshiShah7/unsupervised_ml_final_project

https://proceedings.mlr.press/v80/ruff18a.html
https://doi.org/10.3390/s25010067
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1109/ICDM.2008.17
https://papers.nips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://papers.nips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1016/j.neunet.2012.02.016
https://github.com/VedanshiShah7/unsupervised_ml_final_project
https://github.com/VedanshiShah7/unsupervised_ml_final_project

VI. Appendix

Visualization Overview: Understanding Simulated vs Benchmark AUC

To evaluate the behavior and distribution of AUC scores across different layers and

configurations in our simulation, we employed a variety of visualizations, each offering unique

insights into the data.

Figure 6: Benchmark vs Simulated AUC (Bar Plot)

This bar plot compares the benchmark AUC values against simulated AUCs, providing a direct

visual contrast. It highlights how well the simulation aligns with expected performance and

quickly identifies any deviations.

Figure 7: Heatmap of Simulated AUC

The heatmap visualizes AUC values across combinations of layers or hyperparameters, with

color intensity indicating performance. It allows for easy spotting of clusters or patterns where

AUCs are consistently high or low.

Figure 8: Histogram of Simulated AUC

This figure shows the frequency distribution of simulated AUC scores, helping us understand the

central tendency and spread. It reveals whether the simulations tend to produce high, moderate,

or low AUCs and whether the distribution is skewed.

Figure 9: Violin Plot of AUC by Layer

The violin plot combines a boxplot with a kernel density plot for each layer, showing both the

distribution and variability of AUCs within layers. It helps us assess whether certain layers

consistently perform better or exhibit more variance.

Figure 10: Line Plot of Simulated AUC

This line plot tracks the changes in simulated AUCs over time or iterations. It is useful for

identifying trends or stability in performance as the simulation progresses or conditions change.

Figure 11: 3D Scatter Plot

The 3D scatter plot shows the relationship between three variables—often layers, another

parameter (e.g., dropout or learning rate), and AUC. It provides a spatial view of how AUC

behaves across multiple dimensions.

Figure 12: Boxplot of Simulated AUC

This classic statistical visualization shows the spread, median, and potential outliers in the

simulated AUC scores. It offers a clean summary of variability and highlights any unusually high

or low values.

Figure 13: Radar Plot of Top Simulated AUCs

Radar plots allow comparison of the top-performing simulations across multiple metrics or

configurations. It provides a quick glance at which layers or parameters excel across different

axes.

Figure 14: Pairplot of Layers vs AUC

The pairplot offers a matrix of scatter plots for each pair of variables, revealing potential

correlations or interactions between layers and AUC. It is especially useful for exploratory

analysis to spot trends or outliers.

Figure 15: KDE Jointplot

This jointplot uses kernel density estimation to show the probability density of AUCs alongside

scatter plots. It illustrates both the concentration of values and their distribution, offering a

more nuanced view than simple scatterplots.

	Final Project Report
	Deep One-Class Classification
	
	I. Paper Review
	I.I Introduction
	I.II. Philosophy
	I.III. Method
	I.IV. Dataset
	I.V. Experimental Setup
	I.V.I. Evaluation Metric:
	I.V.II. Experimental Procedure:
	I.V.III. Baselines and Comparisons:
	I.V.IV. Training Details:

	I.VI. Results

	II. Our Comments
	II.I. Discussion
	II.II. Overall Comparison
	II.III. Future Enhancements

	III. Our Solution
	III.I Methods
	III.II Pre-Processing
	III.II.I Pre-Processing Methods
	III.II.I.I BatchNorm
	III.II.I.II Dropout
	III.II.I.III ZCA Whitening

	III.III. During Processing
	III.III.I. Attention Block
	III.III.II. Residual Skip

	III.IV. Post Processing
	III.IV.I. LayerNorm
	III.IV.II. Dense Projection

	III.V. Post Processing: MNIST Github Application
	III.V.I. Purpose and Setup
	III.V.II. Implementation

	III.V Feature Patching: Cifar10 Github Application
	III.V.I Motivation
	III.V.II Solution
	III.V.III Implementation
	III.V.IV Experimental Setup

	
	III.VI. Our results
	III.VII. Comments
	III.VIII. Future Enhancements
	III.IX. Retrospective: What worked and what did not

	IV. Conclusion
	
	V. References
	VI. Appendix
	Visualization Overview: Understanding Simulated vs Benchmark AUC

