
Project 2 Report:

AI Agents for Sepsis EHR Analysis

By Vedanshi Shah

Due Sunday, March 23, 2025 at 11:59 PM

COSI 149B: Practical Machine Learning with Big Data

Prof: Pengyu Hong

Abstract..2

I. Introduction... 2

II. Dataset and Preprocessing... 2

III. Methodology..5

III.I. System Design and Tool Selection... 5

III.II. Generative AI System Lifecycle Integration... 5

III.III. Tool Implementation... 7

III.III.I. Tool Pipeline Overview..7

III.III.I.I. T1: Data Loading...7

III.III.I.II. T2: Imputation of Missing Values...10

III.III.I.III. T3: Mortality Prediction Using a Pre-Trained Model............................... 10

III.III.I.IV. T4: Statistical Analysis of Features.. 12

III.IV. Challenges and Refinements.. 13

IV. Imputation with tPatch-GNN.. 14

V. Mortality Prediction and Interpretability...14

VI. Exploration of AI Agent Frameworks..16

VII. Final Agent Design and System Architecture.. 17

User Interaction & Language Understanding... 17

VIII. Discussion and Reflections...18

IX. Future Work...18

X. Conclusion... 19

XI. Acknowledgments..19

XII. References..20

XI. Appendix.. 21

Abstract

This project explores the development of a clinical AI agent designed to assist healthcare

professionals by interpreting incomplete electronic health records (EHR) and predicting 90-day

mortality risk for sepsis patients. The agent performs three interconnected tasks: imputing

missing clinical data using a graph neural network, predicting patient outcomes through a

transparent machine learning model, and generating natural language explanations using a

large language model (LLM) interface. I experimented with various AI agent

frameworks—including OpenManus, Ollama, Superagent, and several agents from the

Awesome-AI-Agents repository—but ultimately selected Langchain for its modular design,

dynamic tool invocation, and conversational memory capabilities. This report details the

problem setting, technical architecture, model choices, and agent framework exploration,

culminating in a fully functional and interpretable clinical assistant capable of assisting in

real-world, high-stakes environments like intensive care.

Try out the live website: https://practical-ml-project-2.streamlit.app/

I. Introduction

Sepsis remains one of the most time-sensitive and life-threatening conditions in intensive care

medicine. Early recognition and timely intervention can drastically improve outcomes, but

clinicians often work with incomplete, irregularly sampled EHR data that impedes diagnosis and

prognosis. This project addresses this challenge by designing an intelligent agent that can reason

over sparse clinical data, make predictive inferences, and explain its reasoning in natural

language. Beyond the technical implementation, the broader goal of the project was to

investigate how modern AI systems—including graph-based models and LLMs—can be

integrated to support clinical workflows with transparency and robustness.

To this end, I envisioned a system that not only predicts mortality risk with reasonable accuracy

but also justifies its conclusions and adapts its output based on the quality and availability of

data. This focus on interpretability, reliability, and usability shaped every component of the

project—from data preprocessing to model design to framework selection for the AI agent

interface.

II. Dataset and Preprocessing

The dataset used for this project consists of multivariate time-series data extracted from

anonymized EHRs of sepsis patients. The variables include lab test results (e.g., lactate,

platelets, creatinine), vital signs (e.g., heart rate, blood pressure), and demographic information.

As is typical in real-world hospital datasets, data points were recorded irregularly, with a high

percentage of missing values, especially in more costly or invasive tests.

https://practical-ml-project-2.streamlit.app/

The preprocessing pipeline involved resampling the data into fixed-size time windows and

organizing it as temporal sequences per patient. I explored several baseline imputation

techniques such as mean fill, forward fill, and K-nearest neighbors, but these approaches either

made strong (and often incorrect) assumptions or introduced biases that distorted downstream

predictions. These limitations led me to adopt a more advanced imputation technique that could

learn temporal and relational structures within the data.

Variable Description

bloc The order of entry of icu stay

icustayid Unique identifier for a patient’s ICU stay

charttime Timestamp when the data was recorded (charting time)

gender Patient’s gender

age Patient’s age in days

elixhauser Elixhauser comorbidity score, summarizing the burden of chronic

diseases

mortality_90d Mortality status within 90 days of admission or discharge. This is the

class label

Weight_kg Patient weight in kilograms

GCS Glasgow Coma Scale score, a measure of consciousness

HR Heart rate (beats per minute)

SysBP Systolic blood pressure

MeanBP Mean arterial blood pressure

DiaBP Diastolic blood pressure

RR Respiratory rate (breaths per minute)

SpO2 Peripheral capillary oxygen saturation (%)

TempC Body temperature in degrees Celsius

FiO2_1 Fraction of inspired oxygen (FiO2) provided

Potassium Serum potassium level

Sodium Serum sodium level

Chloride Serum chloride level

Glucose Blood glucose level

BUN Blood urea nitrogen level

Creatinine Serum creatinine level

Magnesium Serum magnesium level

Calcium Serum calcium level

Ionised_Ca Ionized calcium level

CO2_mEqL Carbon dioxide content measured in mEq/L

SGOT Aspartate aminotransferase (AST) level

SGPT Alanine aminotransferase (ALT) level

Total_bili Total bilirubin level

Albumin Serum albumin level

Hb Hemoglobin concentration

WBC_count White blood cell count

Platelets_count Platelet count

PTT Partial thromboplastin time, assessing blood clotting

PT Prothrombin time, another measure of clotting function

INR International Normalized Ratio, standardizing PT results

Arterial_pH pH of arterial blood

paO2 Partial pressure of oxygen in arterial blood

paCO2 Partial pressure of carbon dioxide in arterial blood

Arterial_BE Arterial base excess, indicating metabolic balance

HCO3 Bicarbonate concentration in the blood

Arterial_lactate Lactate level in arterial blood (marker for tissue hypoxia)

mechvent Indicator of whether the patient was mechanically ventilated

Shock_Index Index of shock evaluation

PaO2_FiO2 Ratio of paO2 to FiO2, used to assess lung oxygenation efficiency

median_dose_vaso Median dose of vasopressors administered during ICU stay

max_dose_vaso Maximum dose of vasopressors administered

input_total Total volume of fluids administered

input_4hourly Fluid input measured over each 4-hour period

output_total Total urine output (losses) recorded

output_4hourly Urine output measured over each 4-hour period

cumulated_balance Cumulative account balance

SOFA
Sequential Organ Failure Assessment score, indicating severity of organ

dysfunction

SIRS
Systemic Inflammatory Response Syndrome criteria or score, indicating

inflammatory state

Table 1: Dataset Descriptors

III. Methodology

The methodology of this project is centered around the development of an autonomous agent

using generative AI systems, specifically leveraging frameworks such as LangChain,

Superagent, and other related tools. The approach follows a structured workflow that spans

various stages of system design, implementation, and optimization, adhering to the Generative

AI System Lifecycle.

III.I. System Design and Tool Selection

The first step in the methodology was to conduct a thorough evaluation of available tools for

building an autonomous agent. Initially, various frameworks were considered, including Open

Manus, Ollama, Superagent, LangChain, and the Awesome AI Agents collection. After

testing and comparing the capabilities of these frameworks, I selected LangChain due to its

rich set of features for integrating large language models (LLMs) and external APIs, which aligns

with the needs of the project.

LangChain offers a comprehensive architecture for building autonomous agents that can

perform tasks such as context switching, interaction with external data sources, and

decision-making. Its flexibility in handling different types of input and generating human-like

responses made it the most suitable choice for the project’s objectives.

III.II. Generative AI System Lifecycle Integration

The development process was structured around the Generative AI System Lifecycle, which

ensures the systematic creation and continuous improvement of the agent. This lifecycle consists

of five key stages, which were incorporated as follows:

1. Design and Planning: In this phase, the problem space was defined, focusing on the

need for an autonomous agent capable of dynamically responding to user queries,

fetching information, and interacting with external services. The design included the

selection of LangChain as the core framework and outlined integration points with

external APIs, including data storage solutions.

2. Training and Model Selection: Although the primary task involved using pretrained

models, the project required fine-tuning and configuring LangChain to perform specific

tasks based on real-time inputs. Training in this case involved setting up and testing

multiple agent strategies, determining the most effective approaches for engaging with

external services, and testing language model responses.

3. Evaluation: Evaluation of the system was conducted through a series of tests designed

to assess the agent's ability to respond accurately and effectively. This included testing

the agent’s capacity for real-time decision-making, processing dynamic inputs, and

handling context-switching scenarios. Performance was evaluated using both qualitative

feedback and quantitative metrics, such as response accuracy and task completion time.

4. Deployment: Once the system was refined through testing, it was deployed for

real-world use. This phase involved the integration of LangChain into a functional web

application or another platform where the autonomous agent could interact with users.

Real-time deployment allowed for continuous monitoring and real-world validation of

the agent’s performance.

5. Continuous Improvement: Following deployment, the project entered the

continuous improvement phase. This ongoing stage involved collecting user feedback,

tracking performance metrics, and applying updates to enhance functionality. Any issues

identified during deployment were addressed through iterative updates to the agent’s

logic and response generation capabilities.

Figure 1: Generative AI System Lifecycle from class on April 29, 2025

III.III. Tool Implementation

The main tool for developing the autonomous agent was LangChain. The framework’s modular

design allowed for seamless integration of different components like chat models, vector stores,

and external API calls. LangChain’s agents class was particularly useful in defining the agent’s

logic and decision-making process. This class was leveraged to create custom agent behaviors,

enabling the system to make intelligent decisions based on user input and external factors.

In addition to LangChain, other tools such as Superagent were explored but not fully

integrated. Superagent provided an alternative approach for building autonomous agents but

was ultimately less suited for the project’s specific needs. The decision to focus on LangChain

was based on its well-documented capabilities, the support for complex workflows, and the ease

of integration with various data sources.

Figure 2: Using natural language to get details for patient with a specific ID

III.III.I. Tool Pipeline Overview

The tool pipeline described in this project is designed to facilitate efficient data processing,

model prediction, and statistical analysis, ensuring a streamlined and effective workflow for

handling large datasets. The pipeline consists of four primary steps: data loading, imputation of

missing values, prediction using a pre-trained model, and the calculation of feature statistics.

III.III.I.I. T1: Data Loading

The first step of the pipeline involves loading the raw data into the system. This step is crucial

for gathering the dataset, which forms the basis for further processing. The data can come from

various sources, including CSV files, databases, or APIs. The data is then structured into a

format that can be easily manipulated and passed through the subsequent stages of the pipeline.

Figure 3: Patient Lookup to get patient data for a specific ID can be typed or chosen from the

drop-down menu

Figure 4: Detailed view of the patient ID selected with scrollable information of all occurrences

and being able to view specific values for an occurrence by scrubbing the patient timeline.

Figure 5: Trends of stats over time to see changes at a glance for the patient with ID selected.

Figure 6: Trends of stats over time to see changes at a glance for the patient with ID selected

that can be zoomed in for more information and hovered over for tooltip information.

III.III.I.II. T2: Imputation of Missing Values

After loading the data, the next step is to handle missing or incomplete values. Imputation is

performed to fill in any gaps in the dataset, ensuring that no essential information is lost. The

imputation method may vary depending on the dataset and the nature of the missing values.

Common techniques include filling missing values with the mean, median, or using more

advanced methods like K-Nearest Neighbors (KNN). Once the imputation is performed, the

modified dataset is saved temporarily for further processing.

Figure 7: Running the imputed value model and inputting the patient data.

III.III.I.III. T3: Mortality Prediction Using a Pre-Trained Model

Once the dataset is complete, the next step involves passing the imputed data to a machine

learning model for prediction. The model is typically pre-trained on similar data, and the goal is

to use this trained model to generate predictions based on the current dataset. This step

transforms the raw data into valuable insights that can be used for decision-making or further

analysis. The results from the prediction model are saved to a temporary file for record-keeping

and further utilization.

Figure 8: Positive mortality prediction for patient with the probability.

Figure 9: Negative mortality prediction for patient with the probability.

Figure 10: Ensemble mortality prediction model accuracy of 78% and AUC of 85% with

Classification report

Figure 11: Deep Neural Network mortality prediction model accuracy of 83% and AUC of 82%

with Classification report (used in the model)

III.III.I.IV. T4: Statistical Analysis of Features

The final step in the pipeline involves the calculation of statistical metrics on the processed

dataset. This step computes various statistical measures, such as the mean, standard deviation,

and other descriptive statistics for each feature in the dataset. These statistics provide a deeper

understanding of the data's distribution and can highlight key characteristics or trends. The

statistical analysis is particularly useful for feature selection, model validation, and gaining

insights into the dataset's overall structure.

Figure 12: Statistical analysis as part of the report pdf downloaded.

Figure 13: Patient Summary with downloadable detailed report using gemini model.

III.IV. Challenges and Refinements

Throughout the development process, several challenges emerged. One key issue was managing

the complexity of integrating multiple external APIs and ensuring that the agent could

dynamically adjust to new data without losing context. This was addressed by customizing

LangChain’s agent framework to handle various inputs and switching between different tasks

efficiently.

Another challenge involved fine-tuning the agent’s natural language generation capabilities to

produce coherent and relevant responses. Iterative testing and adjustments were made to

improve response quality, leveraging LangChain’s built-in tools for working with LLMs.

IV. Imputation with tPatch-GNN

To address the missing data problem, I implemented tPatch-GNN, a Temporal Patch Graph

Neural Network specifically tailored for irregular time-series imputation in clinical datasets.

Each patient’s timeline is represented as a graph where nodes correspond to clinical

measurements and edges encode temporal continuity and cross-feature relationships. The

model learns to predict missing values by leveraging these structural dependencies.

In addition to imputation accuracy, I focused heavily on modeling uncertainty. Knowing when

an imputed value is unreliable is vital in medical settings. I used a bootstrapping method

involving multiple stochastic forward passes with dropout or noise injection to estimate

prediction variance. The agent could then qualify its responses with statements like “this value is

estimated with low confidence,” helping clinicians gauge when to rely on the AI system and

when to double-check with further testing.

Figure 14: Explains model architecture visually; helps clarify the advanced imputation

approach

V. Mortality Prediction and Interpretability

After completing the imputation stage, I trained a machine learning model to predict 90-day

mortality risk. I evaluated both classical and deep models—starting with logistic regression and

XGBoost, then experimenting with LSTM-based time-series models. Although deep models

captured long-range dependencies, they often required much more tuning and offered limited

interpretability. XGBoost struck the right balance between performance and transparency.

For interpretability, I used SHAP (SHapley Additive exPlanations) values to identify

which features contributed most to each prediction. This allowed me to trace the reasoning

behind each output and represent it in both numerical and natural language form. For instance,

if the model predicted high mortality risk, the agent might explain, “This is largely due to

elevated lactate levels and decreased platelet count over the last 24 hours.”

Figure 15: SHAP Summary Plot to show which features contributed most to predictions

This feature-level attribution was critical in translating the model’s complex internal logic into

actionable clinical insights. I wrapped this explanation mechanism as a callable tool for the LLM

agent.

Figure 16: Supports evaluation of the model and shows how well it performs

VI. Exploration of AI Agent Frameworks

Building a reliable interface to tie together these tools into a coherent, interactive system

required experimentation with several AI agent frameworks. I began with OpenManus, a

promising system that allows users to build LLM agents with local file access and basic function

calling. While simple to use, it lacked modularity and had limited support for dynamic tool

composition.

I then tested Ollama, which offers a lightweight platform for running LLMs locally. Although

Ollama’s performance was impressive for some tasks, it provided limited extensibility for

chaining tool invocations or orchestrating memory-aware interactions across multiple models.

Next, I explored Superagent, an open-source orchestration framework designed for modular

LLM agents. Despite its extensive feature set and a user-friendly web interface, Superagent still

lacked the flexibility I needed to integrate custom models (like tPatch-GNN or SHAP) as tools

that could interact seamlessly with the LLM.

Finally, I reviewed several community projects from the Awesome-AI-Agents repository.

These showcased clever ways to build agents that browse the web, read PDFs, or access APIs,

but most examples were not suited to the kind of real-time, medically sensitive, model-aware

architecture I required.

After this exploration, I chose Langchain, which offered the most robust and adaptable

solution. Langchain’s ecosystem allowed me to define custom tools, manage conversational

memory, and orchestrate interactions between multiple components (like a SHAP interpreter, a

mortality predictor, and a data retrieval function). I wrapped each model as a Langchain tool,

registered it in the agent’s toolkit, and used Gemini Pro to power the natural language

interaction.

VII. Final Agent Design and System Architecture

The completed agent is a modular system comprising four primary components:

1. Imputation Module (tPatch-GNN): Fills in missing clinical values while estimating

uncertainty.

2. Prediction Module (XGBoost + SHAP): Computes the patient’s mortality risk and

explains model decisions.

3. Tool Wrapper Layer: Converts model outputs into callable tools accessible by the

LLM agent.

4. Langchain-based LLM Agent: Interprets clinician queries, invokes relevant tools,

and generates responses in natural language.

This entire pipeline was deployed via a lightweight Gradio interface that simulates a clinician

interface. Users can upload a patient record, receive an overview of imputed data, view risk

predictions, and converse with the assistant to clarify results. Sample queries include:

● “How likely is this patient to die in 90 days?”

● “Which lab tests contributed most to this prediction?”

● “Are any of the imputed values unreliable?”

● “Summarize the key abnormalities over the past 48 hours.”

Langchain’s built-in memory and context tracking ensured that the agent could maintain

coherent conversations across multiple turns—a key requirement for real-world clinical usage.

User Interaction & Language Understanding

A key feature of our AI agent is its natural language interface, designed to support flexible and

intuitive interactions with users. The agent is capable of understanding a wide range of prompt

styles, including colloquial questions, formal clinical queries, and shorthand instructions (e.g.,

"show patients with high lactate" or "filter ICU > 3 days"). Moreover, when information is

insufficient or ambiguous, the agent actively prompts the user for clarification, such as asking,

“Which column would you like to filter on?” or “Do you want imputation on missing vitals or

labs?” This makes the system both more robust and user-friendly. Future improvements may

involve adding multilingual support and dynamic conversation history tracking to provide even

more seamless and intelligent interactions.

VIII. Discussion and Reflections

This project represents a successful proof of concept for AI-augmented clinical reasoning under

uncertainty. By integrating domain-specific models with an LLM-based interface, I created an

agent that could not only perform predictive tasks but also justify its logic and limitations. One

of the major takeaways from this project was how essential modularity is when working with

specialized tools. Most off-the-shelf agents are designed for general-purpose use and don’t offer

the tight coupling needed between domain models and language interfaces.

Moreover, building trust in medical AI requires more than just accuracy—it demands

transparency, interpretability, and humility. The ability of the agent to say “this value is

estimated with low confidence” or “this conclusion is based on partial data” is just as important

as making correct predictions.

From a technical perspective, Langchain proved to be the right choice due to its flexible

abstractions and vibrant community. It allowed me to iterate quickly, add new tools as needed,

and maintain logical control over how the agent responded to complex questions.

IX. Future Work

While the current version of our AI agent provides a functional and interactive interface for

exploring and analyzing sepsis-related EHR data, there are several important avenues for future

enhancement:

1. Advanced Forecasting and Modeling Techniques:
 We aim to expand our integration of state-of-the-art time series models, particularly

those tailored to irregular and sparse clinical data. Building on the TPA-GNN framework,

future versions may incorporate hybrid architectures that combine temporal attention

with graph-based patient representations to more accurately forecast vitals, lab values,

or sepsis onset in real-world, noisy datasets.

2. Clinical Validation and Expert Feedback:
 While the agent has been developed with general clinical logic in mind, true medical

utility can only be confirmed through collaboration with healthcare professionals. We

plan to conduct user studies involving clinicians and medical students to evaluate

usability, clinical relevance, and diagnostic utility. Feedback from these sessions will

guide further refinements, especially regarding interpretability and user experience.

3. Support for Multimodal and Longitudinal Data:
 Currently, the system primarily operates on structured tabular data. In the future, we

hope to extend support to multimodal inputs including clinical notes, imaging metadata,

or waveforms. Additionally, we will improve handling of longitudinal patient records

over multiple admissions or care episodes, enabling richer patient trajectory modeling.

4. Personalized User Profiles and Context Awareness:
 We envision future versions of the agent that adapt to individual users—whether

researchers, clinicians, or students—by remembering previous sessions, preferences, and

clinical context. This could allow the agent to proactively surface relevant tools or suggest

analyses based on prior usage patterns or ongoing investigations.

5. Multilingual and Cross-Cultural Adaptation:
 To improve accessibility across different regions and populations, future iterations may

include support for multilingual interactions and localization of clinical terminology.

This can make the agent more inclusive and practical for global healthcare research

collaborations.

In summary, the AI agent serves as a foundation for intelligent, interactive EHR analysis. With

the outlined future enhancements, we hope to transition the system from a research prototype

to a clinically valuable decision support tool.

X. Conclusion

The AI agent developed in this project offers a novel integration of imputation, prediction, and

natural language explanation to support clinicians working with sparse EHR data. The

combination of graph neural networks, SHAP-based interpretability, and a Langchain-powered

interface demonstrates how adaptive systems can provide not just answers but insight and

justification. This approach has the potential to augment medical workflows with trustworthy,

explainable support—especially in environments where data is incomplete or noisy.

While the system is currently a research prototype, it opens the door to future work in clinical

validation, cross-institutional generalization, and deployment in real hospital settings. More

broadly, this project illustrates how emerging AI agent ecosystems can be adapted to high-stakes

domains, provided they are implemented with careful attention to robustness, uncertainty, and

human-centered design.

XI. Acknowledgments

I would like to sincerely thank Professor Pengyu Hong for his guidance, encouragement, and

invaluable feedback throughout the course of this project. His insights into adaptive systems and

emphasis on rigor shaped many of the ideas and methodologies explored here. I’m also grateful

to Zepeng Hu and Jiarui Zhang for their technical input, thoughtful discussions, and support

during the design and implementation phases—especially around model evaluation and agent

architecture. Their contributions helped me refine key components of the system. I also extend

my appreciation to my classmates in COSI 217A for the stimulating conversations and references

shared during our seminars; these exchanges played a meaningful role in broadening the scope

of this work and pushing it in new directions.

XII. References

1. Johnson, A. E. W., Pollard, T. J., Shen, L., et al. (2016).
MIMIC-III, a freely accessible critical care database.
Scientific Data, 3, 160035. https://doi.org/10.1038/sdata.2016.35

2. Singer, M., Deutschman, C. S., Seymour, C. W., et al. (2016).
The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).
JAMA, 315(8), 801–810. https://doi.org/10.1001/jama.2016.0287

3. Desautels, T., Calvert, J., Hoffman, J., et al. (2016).
Prediction of sepsis in the ICU using machine learning and physiological data.
BioMed Research International, 2016. https://doi.org/10.1155/2016/9308692

4. Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2017).
Deep EHR: A survey of recent advances in deep learning techniques for electronic

health record (EHR) analysis.
IEEE Journal of Biomedical and Health Informatics, 22(5), 1589–1604.

https://doi.org/10.1109/JBHI.2017.2767063

5. Johnson, A. E. W., Ghassemi, M. M., Nemati, S., et al. (2017).
Machine learning and decision support in critical care.
Proceedings of the IEEE, 104(2), 444–466.

https://doi.org/10.1109/JPROC.2015.2501978

6. Futoma, J., Morris, J., & Lucas, J. (2015).
A comparison of models for predicting early hospital readmissions.
Journal of Biomedical Informatics, 56, 229–238.

https://doi.org/10.1016/j.jbi.2015.05.016

7. Goldstein, B. A., Navar, A. M., Pencina, M. J., & Ioannidis, J. P. A. (2017).
Opportunities and challenges in developing risk prediction models with electronic

health records data: A systematic review.
Journal of the American Medical Informatics Association, 24(1), 198–208.

https://doi.org/10.1093/jamia/ocw042

8. Beam, A. L., & Kohane, I. S. (2018).
Big data and machine learning in health care.
JAMA, 319(13), 1317–1318. https://doi.org/10.1001/jama.2017.18391

9. Rajkomar, A., Dean, J., & Kohane, I. (2019).
Machine learning in medicine.
New England Journal of Medicine, 380, 1347–1358.

https://doi.org/10.1056/NEJMra1814259

https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1001/jama.2016.0287
https://doi.org/10.1155/2016/9308692
https://doi.org/10.1109/JBHI.2017.2767063
https://doi.org/10.1109/JPROC.2015.2501978
https://doi.org/10.1016/j.jbi.2015.05.016
https://doi.org/10.1093/jamia/ocw042
https://doi.org/10.1001/jama.2017.18391
https://doi.org/10.1056/NEJMra1814259

10. Nemati, S., Holder, A., Razmi, F., et al. (2018).
An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU.
Critical Care Medicine, 46(4), 547–553.

https://doi.org/10.1097/CCM.0000000000002936

11. Zhao, Y., Liu, C., Zhang, H., et al. (2024).
Irregular Multivariate Time Series Forecasting: A Transformable Patching Graph

Neural Networks Approach.
Proceedings of the 41st International Conference on Machine Learning (ICML 2024).
GitHub: https://github.com/usail-hkust/t-PatchGNN

12. Manna and Poem Lab. (2024).
OpenManus: Modular AI Agent Framework for Clinical and Document Analysis.
GitHub Repository. https://github.com/mannaandpoem/OpenManus

XI. Appendix

Github project link: https://github.com/VedanshiShah7/practical-ml-project-2

Try out the live website: https://practical-ml-project-2.streamlit.app/

Figure 17: Contribution to moodle group discussion along with in class discussions

https://moodle.brandeis.edu/mod/forum/discuss.php?d=42018

https://doi.org/10.1097/CCM.0000000000002936
https://github.com/usail-hkust/t-PatchGNN
https://github.com/mannaandpoem/OpenManus
https://github.com/VedanshiShah7/practical-ml-project-2
https://practical-ml-project-2.streamlit.app/
https://moodle.brandeis.edu/mod/forum/discuss.php?d=42018

Figure 18: Website Preview

	Project 2 Report:
	AI Agents for Sepsis EHR Analysis
	
	Abstract
	I. Introduction
	II. Dataset and Preprocessing
	III. Methodology
	III.I. System Design and Tool Selection
	III.II. Generative AI System Lifecycle Integration
	III.III. Tool Implementation
	III.III.I. Tool Pipeline Overview
	III.III.I.I. T1: Data Loading
	III.III.I.II. T2: Imputation of Missing Values
	III.III.I.III. T3: Mortality Prediction Using a Pre-Trained Model
	III.III.I.IV. T4: Statistical Analysis of Features

	III.IV. Challenges and Refinements

	IV. Imputation with tPatch-GNN
	V. Mortality Prediction and Interpretability
	VI. Exploration of AI Agent Frameworks
	VII. Final Agent Design and System Architecture
	User Interaction & Language Understanding

	VIII. Discussion and Reflections
	IX. Future Work
	X. Conclusion
	XI. Acknowledgments
	XII. References
	XI. Appendix

