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Abstract 

This project explores the development of a clinical AI agent designed to assist healthcare 

professionals by interpreting incomplete electronic health records (EHR) and predicting 90-day 

mortality risk for sepsis patients. The agent performs three interconnected tasks: imputing 

missing clinical data using a graph neural network, predicting patient outcomes through a 

transparent machine learning model, and generating natural language explanations using a 

large language model (LLM) interface. I experimented with various AI agent 

frameworks—including OpenManus, Ollama, Superagent, and several agents from the 

Awesome-AI-Agents repository—but ultimately selected Langchain for its modular design, 

dynamic tool invocation, and conversational memory capabilities. This report details the 

problem setting, technical architecture, model choices, and agent framework exploration, 

culminating in a fully functional and interpretable clinical assistant capable of assisting in 

real-world, high-stakes environments like intensive care. 

Try out the live website: https://practical-ml-project-2.streamlit.app/  

I. Introduction 

Sepsis remains one of the most time-sensitive and life-threatening conditions in intensive care 

medicine. Early recognition and timely intervention can drastically improve outcomes, but 

clinicians often work with incomplete, irregularly sampled EHR data that impedes diagnosis and 

prognosis. This project addresses this challenge by designing an intelligent agent that can reason 

over sparse clinical data, make predictive inferences, and explain its reasoning in natural 

language. Beyond the technical implementation, the broader goal of the project was to 

investigate how modern AI systems—including graph-based models and LLMs—can be 

integrated to support clinical workflows with transparency and robustness. 

To this end, I envisioned a system that not only predicts mortality risk with reasonable accuracy 

but also justifies its conclusions and adapts its output based on the quality and availability of 

data. This focus on interpretability, reliability, and usability shaped every component of the 

project—from data preprocessing to model design to framework selection for the AI agent 

interface. 

II. Dataset and Preprocessing 

The dataset used for this project consists of multivariate time-series data extracted from 

anonymized EHRs of sepsis patients. The variables include lab test results (e.g., lactate, 

platelets, creatinine), vital signs (e.g., heart rate, blood pressure), and demographic information. 

As is typical in real-world hospital datasets, data points were recorded irregularly, with a high 

percentage of missing values, especially in more costly or invasive tests. 

https://practical-ml-project-2.streamlit.app/


The preprocessing pipeline involved resampling the data into fixed-size time windows and 

organizing it as temporal sequences per patient. I explored several baseline imputation 

techniques such as mean fill, forward fill, and K-nearest neighbors, but these approaches either 

made strong (and often incorrect) assumptions or introduced biases that distorted downstream 

predictions. These limitations led me to adopt a more advanced imputation technique that could 

learn temporal and relational structures within the data. 

Variable Description 

bloc The order of entry of icu stay 

icustayid Unique identifier for a patient’s ICU stay 

charttime Timestamp when the data was recorded (charting time) 

gender Patient’s gender 

age Patient’s age in days 

elixhauser Elixhauser comorbidity score, summarizing the burden of chronic 

diseases 

mortality_90d Mortality status within 90 days of admission or discharge. This is the 

class label 

Weight_kg Patient weight in kilograms 

GCS Glasgow Coma Scale score, a measure of consciousness 

HR Heart rate (beats per minute) 

SysBP Systolic blood pressure 

MeanBP Mean arterial blood pressure 

DiaBP Diastolic blood pressure 

RR Respiratory rate (breaths per minute) 

SpO2 Peripheral capillary oxygen saturation (%) 

TempC Body temperature in degrees Celsius 

FiO2_1 Fraction of inspired oxygen (FiO2) provided 

Potassium Serum potassium level 

Sodium Serum sodium level 

Chloride Serum chloride level 

Glucose Blood glucose level 



BUN Blood urea nitrogen level 

Creatinine Serum creatinine level 

Magnesium Serum magnesium level 

Calcium Serum calcium level 

Ionised_Ca Ionized calcium level 

CO2_mEqL Carbon dioxide content measured in mEq/L 

SGOT Aspartate aminotransferase (AST) level 

SGPT Alanine aminotransferase (ALT) level 

Total_bili Total bilirubin level 

Albumin Serum albumin level 

Hb Hemoglobin concentration 

WBC_count White blood cell count 

Platelets_count Platelet count 

PTT Partial thromboplastin time, assessing blood clotting 

PT Prothrombin time, another measure of clotting function 

INR International Normalized Ratio, standardizing PT results 

Arterial_pH pH of arterial blood 

paO2 Partial pressure of oxygen in arterial blood 

paCO2 Partial pressure of carbon dioxide in arterial blood 

Arterial_BE Arterial base excess, indicating metabolic balance 

HCO3 Bicarbonate concentration in the blood 

Arterial_lactate Lactate level in arterial blood (marker for tissue hypoxia) 

mechvent Indicator of whether the patient was mechanically ventilated 

Shock_Index Index of shock evaluation 

PaO2_FiO2 Ratio of paO2 to FiO2, used to assess lung oxygenation efficiency 

median_dose_vaso Median dose of vasopressors administered during ICU stay 

max_dose_vaso Maximum dose of vasopressors administered 



input_total Total volume of fluids administered 

input_4hourly Fluid input measured over each 4-hour period 

output_total Total urine output (losses) recorded 

output_4hourly Urine output measured over each 4-hour period 

cumulated_balance Cumulative account balance 

SOFA 
Sequential Organ Failure Assessment score, indicating severity of organ 

dysfunction 

SIRS 
Systemic Inflammatory Response Syndrome criteria or score, indicating 

inflammatory state 

Table 1: Dataset Descriptors 

III. Methodology 

The methodology of this project is centered around the development of an autonomous agent 

using generative AI systems, specifically leveraging frameworks such as LangChain, 

Superagent, and other related tools. The approach follows a structured workflow that spans 

various stages of system design, implementation, and optimization, adhering to the Generative 

AI System Lifecycle. 

III.I. System Design and Tool Selection 

The first step in the methodology was to conduct a thorough evaluation of available tools for 

building an autonomous agent. Initially, various frameworks were considered, including Open 

Manus, Ollama, Superagent, LangChain, and the Awesome AI Agents collection. After 

testing and comparing the capabilities of these frameworks, I selected LangChain due to its 

rich set of features for integrating large language models (LLMs) and external APIs, which aligns 

with the needs of the project. 

LangChain offers a comprehensive architecture for building autonomous agents that can 

perform tasks such as context switching, interaction with external data sources, and 

decision-making. Its flexibility in handling different types of input and generating human-like 

responses made it the most suitable choice for the project’s objectives. 

III.II. Generative AI System Lifecycle Integration 

The development process was structured around the Generative AI System Lifecycle, which 

ensures the systematic creation and continuous improvement of the agent. This lifecycle consists 

of five key stages, which were incorporated as follows: 



1.​ Design and Planning: In this phase, the problem space was defined, focusing on the 

need for an autonomous agent capable of dynamically responding to user queries, 

fetching information, and interacting with external services. The design included the 

selection of LangChain as the core framework and outlined integration points with 

external APIs, including data storage solutions. 

2.​ Training and Model Selection: Although the primary task involved using pretrained 

models, the project required fine-tuning and configuring LangChain to perform specific 

tasks based on real-time inputs. Training in this case involved setting up and testing 

multiple agent strategies, determining the most effective approaches for engaging with 

external services, and testing language model responses. 

3.​ Evaluation: Evaluation of the system was conducted through a series of tests designed 

to assess the agent's ability to respond accurately and effectively. This included testing 

the agent’s capacity for real-time decision-making, processing dynamic inputs, and 

handling context-switching scenarios. Performance was evaluated using both qualitative 

feedback and quantitative metrics, such as response accuracy and task completion time. 

4.​ Deployment: Once the system was refined through testing, it was deployed for 

real-world use. This phase involved the integration of LangChain into a functional web 

application or another platform where the autonomous agent could interact with users. 

Real-time deployment allowed for continuous monitoring and real-world validation of 

the agent’s performance. 

5.​ Continuous Improvement: Following deployment, the project entered the 

continuous improvement phase. This ongoing stage involved collecting user feedback, 

tracking performance metrics, and applying updates to enhance functionality. Any issues 

identified during deployment were addressed through iterative updates to the agent’s 

logic and response generation capabilities. 

 

Figure 1: Generative AI System Lifecycle from class on April 29, 2025 



III.III. Tool Implementation 

The main tool for developing the autonomous agent was LangChain. The framework’s modular 

design allowed for seamless integration of different components like chat models, vector stores, 

and external API calls. LangChain’s agents class was particularly useful in defining the agent’s 

logic and decision-making process. This class was leveraged to create custom agent behaviors, 

enabling the system to make intelligent decisions based on user input and external factors. 

In addition to LangChain, other tools such as Superagent were explored but not fully 

integrated. Superagent provided an alternative approach for building autonomous agents but 

was ultimately less suited for the project’s specific needs. The decision to focus on LangChain 

was based on its well-documented capabilities, the support for complex workflows, and the ease 

of integration with various data sources. 

 

Figure 2: Using natural language to get details for patient with a specific ID 

III.III.I. Tool Pipeline Overview 

The tool pipeline described in this project is designed to facilitate efficient data processing, 

model prediction, and statistical analysis, ensuring a streamlined and effective workflow for 

handling large datasets. The pipeline consists of four primary steps: data loading, imputation of 

missing values, prediction using a pre-trained model, and the calculation of feature statistics. 

III.III.I.I. T1: Data Loading 

The first step of the pipeline involves loading the raw data into the system. This step is crucial 

for gathering the dataset, which forms the basis for further processing. The data can come from 

various sources, including CSV files, databases, or APIs. The data is then structured into a 

format that can be easily manipulated and passed through the subsequent stages of the pipeline. 



 

Figure 3: Patient Lookup to get patient data for a specific ID can be typed or chosen from the 

drop-down menu 

 

Figure 4: Detailed view of the patient ID selected with scrollable information of all occurrences 

and being able to view specific values for an occurrence by scrubbing the patient timeline.  



 

Figure 5: Trends of stats over time to see changes at a glance for the patient with ID selected. 

 

Figure 6: Trends of stats over time to see changes at a glance for the patient with ID selected 

that can be zoomed in for more information and hovered over for tooltip information. 



III.III.I.II. T2: Imputation of Missing Values 

After loading the data, the next step is to handle missing or incomplete values. Imputation is 

performed to fill in any gaps in the dataset, ensuring that no essential information is lost. The 

imputation method may vary depending on the dataset and the nature of the missing values. 

Common techniques include filling missing values with the mean, median, or using more 

advanced methods like K-Nearest Neighbors (KNN). Once the imputation is performed, the 

modified dataset is saved temporarily for further processing. 

 

Figure 7: Running the imputed value model and inputting the patient data. 

III.III.I.III. T3: Mortality Prediction Using a Pre-Trained Model 

Once the dataset is complete, the next step involves passing the imputed data to a machine 

learning model for prediction. The model is typically pre-trained on similar data, and the goal is 

to use this trained model to generate predictions based on the current dataset. This step 

transforms the raw data into valuable insights that can be used for decision-making or further 

analysis. The results from the prediction model are saved to a temporary file for record-keeping 

and further utilization. 



 

Figure 8: Positive mortality prediction for patient with the probability. 

 

Figure 9: Negative mortality prediction for patient with the probability. 

 

Figure 10: Ensemble mortality prediction model accuracy of 78% and AUC of 85% with 

Classification report  



 

Figure 11: Deep Neural Network mortality prediction model accuracy of 83% and AUC of 82% 

with Classification report (used in the model) 

 

III.III.I.IV. T4: Statistical Analysis of Features 

The final step in the pipeline involves the calculation of statistical metrics on the processed 

dataset. This step computes various statistical measures, such as the mean, standard deviation, 

and other descriptive statistics for each feature in the dataset. These statistics provide a deeper 

understanding of the data's distribution and can highlight key characteristics or trends. The 

statistical analysis is particularly useful for feature selection, model validation, and gaining 

insights into the dataset's overall structure. 

 

Figure 12: Statistical analysis as part of the report pdf downloaded. 



 

 

Figure 13: Patient Summary with downloadable detailed report using gemini model. 

III.IV. Challenges and Refinements 

Throughout the development process, several challenges emerged. One key issue was managing 

the complexity of integrating multiple external APIs and ensuring that the agent could 

dynamically adjust to new data without losing context. This was addressed by customizing 



LangChain’s agent framework to handle various inputs and switching between different tasks 

efficiently. 

Another challenge involved fine-tuning the agent’s natural language generation capabilities to 

produce coherent and relevant responses. Iterative testing and adjustments were made to 

improve response quality, leveraging LangChain’s built-in tools for working with LLMs. 

IV. Imputation with tPatch-GNN 

To address the missing data problem, I implemented tPatch-GNN, a Temporal Patch Graph 

Neural Network specifically tailored for irregular time-series imputation in clinical datasets. 

Each patient’s timeline is represented as a graph where nodes correspond to clinical 

measurements and edges encode temporal continuity and cross-feature relationships. The 

model learns to predict missing values by leveraging these structural dependencies. 

In addition to imputation accuracy, I focused heavily on modeling uncertainty. Knowing when 

an imputed value is unreliable is vital in medical settings. I used a bootstrapping method 

involving multiple stochastic forward passes with dropout or noise injection to estimate 

prediction variance. The agent could then qualify its responses with statements like “this value is 

estimated with low confidence,” helping clinicians gauge when to rely on the AI system and 

when to double-check with further testing. 

 

Figure 14: Explains model architecture visually; helps clarify the advanced imputation 

approach 

V. Mortality Prediction and Interpretability 



After completing the imputation stage, I trained a machine learning model to predict 90-day 

mortality risk. I evaluated both classical and deep models—starting with logistic regression and 

XGBoost, then experimenting with LSTM-based time-series models. Although deep models 

captured long-range dependencies, they often required much more tuning and offered limited 

interpretability. XGBoost struck the right balance between performance and transparency. 

For interpretability, I used SHAP (SHapley Additive exPlanations) values to identify 

which features contributed most to each prediction. This allowed me to trace the reasoning 

behind each output and represent it in both numerical and natural language form. For instance, 

if the model predicted high mortality risk, the agent might explain, “This is largely due to 

elevated lactate levels and decreased platelet count over the last 24 hours.” 

 

Figure 15: SHAP Summary Plot to show which features contributed most to predictions 



This feature-level attribution was critical in translating the model’s complex internal logic into 

actionable clinical insights. I wrapped this explanation mechanism as a callable tool for the LLM 

agent. 

 

Figure 16: Supports evaluation of the model and shows how well it performs 

VI. Exploration of AI Agent Frameworks 

Building a reliable interface to tie together these tools into a coherent, interactive system 

required experimentation with several AI agent frameworks. I began with OpenManus, a 

promising system that allows users to build LLM agents with local file access and basic function 

calling. While simple to use, it lacked modularity and had limited support for dynamic tool 

composition. 

I then tested Ollama, which offers a lightweight platform for running LLMs locally. Although 

Ollama’s performance was impressive for some tasks, it provided limited extensibility for 

chaining tool invocations or orchestrating memory-aware interactions across multiple models. 

Next, I explored Superagent, an open-source orchestration framework designed for modular 

LLM agents. Despite its extensive feature set and a user-friendly web interface, Superagent still 

lacked the flexibility I needed to integrate custom models (like tPatch-GNN or SHAP) as tools 

that could interact seamlessly with the LLM. 

Finally, I reviewed several community projects from the Awesome-AI-Agents repository. 

These showcased clever ways to build agents that browse the web, read PDFs, or access APIs, 



but most examples were not suited to the kind of real-time, medically sensitive, model-aware 

architecture I required. 

After this exploration, I chose Langchain, which offered the most robust and adaptable 

solution. Langchain’s ecosystem allowed me to define custom tools, manage conversational 

memory, and orchestrate interactions between multiple components (like a SHAP interpreter, a 

mortality predictor, and a data retrieval function). I wrapped each model as a Langchain tool, 

registered it in the agent’s toolkit, and used Gemini Pro to power the natural language 

interaction. 

VII. Final Agent Design and System Architecture 

The completed agent is a modular system comprising four primary components: 

1.​ Imputation Module (tPatch-GNN): Fills in missing clinical values while estimating 

uncertainty. 

2.​ Prediction Module (XGBoost + SHAP): Computes the patient’s mortality risk and 

explains model decisions. 

3.​ Tool Wrapper Layer: Converts model outputs into callable tools accessible by the 

LLM agent. 

4.​ Langchain-based LLM Agent: Interprets clinician queries, invokes relevant tools, 

and generates responses in natural language.​
 

This entire pipeline was deployed via a lightweight Gradio interface that simulates a clinician 

interface. Users can upload a patient record, receive an overview of imputed data, view risk 

predictions, and converse with the assistant to clarify results. Sample queries include: 

●​ “How likely is this patient to die in 90 days?” 

●​ “Which lab tests contributed most to this prediction?” 

●​ “Are any of the imputed values unreliable?” 

●​ “Summarize the key abnormalities over the past 48 hours.” 

Langchain’s built-in memory and context tracking ensured that the agent could maintain 

coherent conversations across multiple turns—a key requirement for real-world clinical usage. 

User Interaction & Language Understanding 

A key feature of our AI agent is its natural language interface, designed to support flexible and 

intuitive interactions with users. The agent is capable of understanding a wide range of prompt 

styles, including colloquial questions, formal clinical queries, and shorthand instructions (e.g., 

"show patients with high lactate" or "filter ICU > 3 days"). Moreover, when information is 

insufficient or ambiguous, the agent actively prompts the user for clarification, such as asking, 

“Which column would you like to filter on?” or “Do you want imputation on missing vitals or 



labs?” This makes the system both more robust and user-friendly. Future improvements may 

involve adding multilingual support and dynamic conversation history tracking to provide even 

more seamless and intelligent interactions. 

VIII. Discussion and Reflections 

This project represents a successful proof of concept for AI-augmented clinical reasoning under 

uncertainty. By integrating domain-specific models with an LLM-based interface, I created an 

agent that could not only perform predictive tasks but also justify its logic and limitations. One 

of the major takeaways from this project was how essential modularity is when working with 

specialized tools. Most off-the-shelf agents are designed for general-purpose use and don’t offer 

the tight coupling needed between domain models and language interfaces. 

Moreover, building trust in medical AI requires more than just accuracy—it demands 

transparency, interpretability, and humility. The ability of the agent to say “this value is 

estimated with low confidence” or “this conclusion is based on partial data” is just as important 

as making correct predictions. 

From a technical perspective, Langchain proved to be the right choice due to its flexible 

abstractions and vibrant community. It allowed me to iterate quickly, add new tools as needed, 

and maintain logical control over how the agent responded to complex questions. 

IX. Future Work 

While the current version of our AI agent provides a functional and interactive interface for 

exploring and analyzing sepsis-related EHR data, there are several important avenues for future 

enhancement: 

1.​ Advanced Forecasting and Modeling Techniques:​
 We aim to expand our integration of state-of-the-art time series models, particularly 

those tailored to irregular and sparse clinical data. Building on the TPA-GNN framework, 

future versions may incorporate hybrid architectures that combine temporal attention 

with graph-based patient representations to more accurately forecast vitals, lab values, 

or sepsis onset in real-world, noisy datasets. 

2.​ Clinical Validation and Expert Feedback:​
 While the agent has been developed with general clinical logic in mind, true medical 

utility can only be confirmed through collaboration with healthcare professionals. We 

plan to conduct user studies involving clinicians and medical students to evaluate 

usability, clinical relevance, and diagnostic utility. Feedback from these sessions will 

guide further refinements, especially regarding interpretability and user experience. 

3.​ Support for Multimodal and Longitudinal Data:​
 Currently, the system primarily operates on structured tabular data. In the future, we 

hope to extend support to multimodal inputs including clinical notes, imaging metadata, 



or waveforms. Additionally, we will improve handling of longitudinal patient records 

over multiple admissions or care episodes, enabling richer patient trajectory modeling. 

4.​ Personalized User Profiles and Context Awareness:​
 We envision future versions of the agent that adapt to individual users—whether 

researchers, clinicians, or students—by remembering previous sessions, preferences, and 

clinical context. This could allow the agent to proactively surface relevant tools or suggest 

analyses based on prior usage patterns or ongoing investigations. 

5.​ Multilingual and Cross-Cultural Adaptation:​
 To improve accessibility across different regions and populations, future iterations may 

include support for multilingual interactions and localization of clinical terminology. 

This can make the agent more inclusive and practical for global healthcare research 

collaborations. 

In summary, the AI agent serves as a foundation for intelligent, interactive EHR analysis. With 

the outlined future enhancements, we hope to transition the system from a research prototype 

to a clinically valuable decision support tool. 

X. Conclusion 

The AI agent developed in this project offers a novel integration of imputation, prediction, and 

natural language explanation to support clinicians working with sparse EHR data. The 

combination of graph neural networks, SHAP-based interpretability, and a Langchain-powered 

interface demonstrates how adaptive systems can provide not just answers but insight and 

justification. This approach has the potential to augment medical workflows with trustworthy, 

explainable support—especially in environments where data is incomplete or noisy. 

While the system is currently a research prototype, it opens the door to future work in clinical 

validation, cross-institutional generalization, and deployment in real hospital settings. More 

broadly, this project illustrates how emerging AI agent ecosystems can be adapted to high-stakes 

domains, provided they are implemented with careful attention to robustness, uncertainty, and 

human-centered design. 
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Figure 17: Contribution to moodle group discussion along with in class discussions 

https://moodle.brandeis.edu/mod/forum/discuss.php?d=42018  
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Figure 18: Website Preview 
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